1次試験

無差別曲線の性質と関係する限界代替率とは?




参考文献・URL
マンキュー経済学ミクロ編・マクロ編

分厚いマンキュー経済学を読み解くのがめんどくさい人は、こちらをおすすめします。
スタンフォード大学で一番人気の経済学入門(ミクロ編) [ ティモシー・テイラー ]
スタンフォード大学で一番人気の経済学入門(マクロ編) [ ティモシー・テイラー ]

前回、無差別曲線の5つの性質のうち、2つを解説しました。
無差別曲線は無数に存在するってことと、
効用は右上に行けば行くほど高くなるってことでしたね。

詳しい理屈についてはこちらをご覧ください。
無差別曲線5つの性質とは?

今回は無差別曲線の5つの性質の残り3つを解説したいのですが、
限界代替率というものが絡んできますので
一緒に解説していきたいと思います。

スポンサードリンク




限界代替率とは?

そもそも限界代替率とは何でしょう?
限界というのは限界効用などでも解説しましたが
『1単位当たりの』という意味です。
限界効用と総効用とは?違いと求め方についても解説

それから代替というのは交換するという意味です。

なので限界代替率とはある物(X財)を1単位増やすために
もう1つ(Y財)は何単位削減できるか?という意味です。

別の言い方をすると限界代替率とは
ある財(X財)の消費量を1単位増やした場合、
同じ効用(満足度)を維持するために
もう1つの財(Y財)を何単位減らせるか?
という意味です。

限界代替率を公式にしてみると、、、

限界代替率

となります。

つまりXが1単位変化したらYがどれだけ変化するか?
というのを限界代替率の公式は意味している
わけですね。

たとえば速さってkm/時みたいな単位ですね。
これってkmという距離を時間で割っているわけですが
意味としては1時間変化したらどれだけ㎞(距離)が変化するか?
という意味ですからね。

これと限界代替率は同じです。

では例を挙げて説明していきますね。
X財(軸)にのどアメ、Y財(軸)にチロルチョコを
置きます。

限界代替率

で、上記図においてチロルチョコ20個に対して
のどアメ1個という効用を得ているとしますね。
ここでのどアメ1個(単位)増やしたときに
チロルチョコを何個減らせば、
さっきと効用が同じになるでしょう?

今回はのどアメ2個に対してチロルチョコ16個が
さっきと効用が同じとしましょう。
(それが上記図のピンクの点です)

さらに、のどアメを1個増やして3個になったとき
チロルチョコを前と同じ16個欲しいですか?
もうちょっと減るでしょう。

限界代替率

今回はのどアメ3個に対してチロルチョコ14個とします。
(ピンクの点参照)

さらにのどアメが4個になってきたら、
チロルチョコの個数は減ってくるでしょう。

限界代替率とは
ある財(X財)の消費量を1単位増やした場合、
同じ効用(満足度)を維持するために
もう1つの財(Y財)を何単位減らせるか?
でしたね。

前回の記事で説明しましたように
X財(のどアメ)を1個増やしたのに
Y財(チロルチョコ)を減らさないなら
これは効用が増えるわけです。
無差別曲線5つの性質とは?

なので効用(満足度)を同じ状態に保つためには
のどアメを増やした分、チロルチョコをあげるなどして
減らさないといけないわけです。

限界代替率

で、のどアメが2個から3個に1個増えたときに
チロルチョコは16個から14個へと2個減っていますね。

そのため上記図に書いてあるように
限界代替率は2となります。

またのどアメが1個から2個に1個増えたときに
チロルチョコは20個から16個へと4個減っているので
ここの限界代替率は4となります。

最初の限界代替率は4でしたが次は2と
限界代替率が減ってきていますね。
これを限界代替率逓減の法則といいます。

スポンサードリンク




無差別曲線の性質3右下がりになる

無差別曲線は右下がり

同じ効用を維持しようと思ったら
1個もらったら、もう片方は減らさないといけません。
なので、無差別曲線は右下がりになります。

スポンサードリンク




無差別曲線の性質4.原点に対して凸

原点に対して凸

原点に対して凸というのは上記のようなグラフのことです。
原点に対して尖っているというイメージです。
無差別曲線は原点に対して凸になります。

スポンサードリンク




無差別曲線の性質5.交わることがない

musuunomusabetu1104

無差別曲線は満足度(効用)が等しい点の集合です。
効用が違うと上記のように交わることがありません。

以上で解説を終わります。